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Phonon assisted tunnelling through double barriers 
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Toronto M5S 1Al.  Canada 

Received 31 January 1990, in final form 10 April 1990 

Abstract. Tunnelling through double barriers with temporal oscillation of barrier heights is 
solved by a time-dependent two-potential formula. We show that the resonant tunnelling 
survives in the extended phonon modes and that the coherent aspect of phonon assisted 
tunnelling is important. The relevance to certain experiments is also discussed. 

1. Introduction 

Tunnelling through a barrier is a characteristic and fundamental phenomenon in quan- 
tum mechanics. The history of tunnelling studies can be traced back to the 1930s when 
quantum mechanics just emerged. Nowadays, tunnelling still receives a lot of attention 
because of its potential applications in the new generation of high speed and high quality 
electronic devices from novel transistors to lasers and detectors (Capasso et a1 1986). 
Particularly, the ongoing research focuses on the aspects of resonant tunnelling through 
barriers (Tsu and Esaki 1973, Chang et a1 1974, Ricco and Azbell984) and interactions 
with a phonon bath (Calderia and Legget 1981,1983, Bialek eta1 1986). The advent and 
impressive progress of molecular beam epitaxy (MBE) and vapour phase epitaxy (VPE) 
has made it possible to fabricate semiconductor devices containing ultrathin ( S  100 A) 
layers. For example, double barrier structures can be formed by sandwiching a thin 
GaAs layer (<lo0 A) between two GaAlAs barriers. A MOSFET is another example of 
the double barriers which possesses many interesting properties. Since the layer thick- 
ness falls into the range of the de Broglie wavelength of electrons on a Fermi surface and 
the typical barrier heights are of the order of several tenths of eV, the quasi energy levels 
in the well between two barriers are discretised. The same situation occurs in the GaAs- 
AlAs superlattice or so-called ‘quantum wells’. When the Fermi energy matches with 
these quasi energy levels (which can be controlled by an applied voltage bias), a sharp 
maximum of conductance occurs. This resonance phenomenon manifests itself as peaks 
or humps in the tunnelling current versus voltage plot, i.e. the characteristic ZV curve. 
Here, the peak-to-valley ratio of the current is the measure of performance of a high 
quality device (Sollner et al1984, Tsuchiya and Sakaki 1986). Qualitatively, the resonant 
tunnelling is well understood (Ricco and Azbel 1984): a large electronic density builds 
up near the quasi levels between the barriers because the wave leaking through the first 
barrier is constructively interfering with the reflections off the second barrier, thus, the 
large tunnelling current through the second barrier is achieved. This picture of resonant 
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tunnelling remains valid for sequential tunnelling in quantum wells and even in dis- 
ordered materials where the quasi localised states exist as a result of Anderson local- 
isation. 

Among all the factors complicating the analysis of the tunnelling current, electron- 
phonon scattering is the dominant process. While the time scale of scattering (either 
elastic or inelastic) sets up the width of the resonance (Stone and Lee 1986), phonon 
assisted tunnelling leads to the sideband around the principal peak. Nevertheless, the 
phonon effect is extremely difficult to observe in a single-barrier case since it is masked 
by the much larger elastic tunnelling (Goldman et a1 1987), whereas in the double- 
barrier case, there is experimental evidence (Goldman et a1 1987) as well as theoretical 
calculations (Wingreen et a1 1988, Stone et a1 1985) showing the side peaks around the 
resonant peak. As far as theory is concerned, there are two approaches in the literature, 
the difference of which lies in the description of the phonon field. Wingreen et a1 (1988) 
take a complete quantum treatment of phonon modes whereas Stone eta1 (1985) describe 
them as an external time-dependent field. The latter treatments resemble the semi- 
classical theory of photon-matter interaction. However, Stone et a1 (1985) only deal 
with the local phonon mode which is mathematically taken as a spatial 6 function and is 
located inside the well. This work considers a different model: the phonon modes are 
extended in the region of the two barriers. We will show later that resonance tunnelling 
also survives in this model. Furthermore, the relative phase between two extended 
spatial modes will lead to either constructive or destructive interference of the trans- 
mission current. We will discuss this novel feature and the relevance to experiments. 
From the technical point of view, the solutions of the time-dependent Schrodinger 
equation with a harmonic oscillating potential are obtained by Stone et a1 (1985) and 
Buttiker and Landauer (1982) using an iteration method which goes from zeroth-order 
to higher-order side bands. We adopt a different route because of the fast growing 
complexity associated with more barriers and higher-order phonon terms. This new 
method views tunnelling as a scattering event and assumes the static barrier problem is 
solvable and is taken as an unperturbed state. The harmonic oscillation part of the 
potential is added as the perturbation. Using the time-dependent version of the two- 
potential formula, we solve the phonon assisted tunnelling in the double barrier and its 
coherent aspect. 

2. Phonon assisted tunnelling in double barriers 

In order to answer the important question of the role of a temporal oscillation of barriers 
in resonant tunnelling, Stone, Azbel and Lee (SAL) proposed a double square barrier 
potential with a time-dependent perturbation inside the well (Stone et a1 1985). This 
potential can be written as 

V(x,  t )  = u1(x) + u*(x) + 2 y l q x )  cos wt. (1) 

They concluded that resonant tunnelling survives in the localised oscillatory potential 
as shown in (1). Since this potential can only simulate some localised phonon modes in 
GaAs thin layers (or oxide layers in MOSFETS), one would like to generalise it to the 
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extended phonon modes. This article considers a different model-one can think of it 
as a double barrier version of Biittiker and Landauer’s (BL, 1982) generic model: 

vo + v, cos wt if -2a - b <x  < - b 

V(x, t )  = 0 if - b < x < b  (2) i Vo + VI cos(wt+ a) i f b < x < 2 a + b .  

The potential V(x, t) is sketched in figure 1. The interesting feature of this model is 
the relative phase difference a, which can represent the coherent lattice motion if a is a 
fixed phase, or an incoherent motion if a is a random variable like for the case of a 
thermal phonon bath. We will reveal later that a can lead to interference effects if it 
remains fixed. Let us first rewrite the potential in (2) 

V(x, t )  = V,(x) + Vl(X, t) (3a) 

where 

VO i f - 2 a - b < x < - b  

Vo(x) = 0 if - b < x < b  i, i f b < x < 2 a + b  

and 

where 

V ,  (x, t) = V: (x) exp(iwt) + V ;  (x) exp(-iwt) 

tv, if -2a- b < x <  -b 

if - b < x < b  

tVl exp(+ia) i f b < x < 2 a + b .  

Similar to the well known photoabsorption case, the term v; exp(-iiwt) is respon- 
sible for the absorption of a quantum in the rotating wave approximation and the term 
V: exp(iwt) is responsible for the emission of a quantum. 
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We then define the following coefficients for the scattering wavefunction in different 
regions, A, F and P are three coefficients of rightward propagating waves in three 
corresponding regions; B ,  G and Q are their counterparts for leftward ones; C and M 
stand for amplitudes of attenuating waves exp(-Kx); and D and N ,  ones for exp(rcx). 
The ten coefficients are also illustrated in figure 1. 

It is usual in time-dependent potential problems to use the standard procedure 
(Messiah 1961) to derive the following two-potential formula (Jiang 1989) for the one- 
quantum absorption, scattering amplitude in ID? case 

T I  = (im/2n2k)(Y~;)I~i;(x)lYI;") (4) 

where YL;) is an incoming scattering wave by the static potential Vo(x), and Yp) is an 
outgoing wave by the total time-dependent potential V(x, t ) .  

It can be shown that the conventional time-independent two-potential formula 
(Taylor 1972) can be recovered if the potential is static. 

In practice, (4) can be further simplified by taking Yp) as a scattering state under 
Vo with the assumption that V1 is small such that Yp) is not much different from its 
stationary counterpart. This is similar to the distorted wave Born approximation (DWBA) 
and is used throughout this work. Hence, both Yi;) and Yp) are stationary eigenstates 
under a static potential Vo, except that they have slightly different energies determined 
by the kinetic relation k: = k2 + 2mw/h. 

The continuity of the wavefunction and its logarithmic derivative leads to the transfer 
matrix relations (Merzbacher 1970) connecting (A, B), (C, D), ( F ,  G), (M, N), and 
(P, Q). Using these relations, it is trivial to calculate the scattering states with two 
different boundary conditions: (i) outgoing state Y p), i.e. A = 1, Q = 0; (ii) incoming 
state Vi;), i.e. B = 0 ,  P = I. 

Tdouble = exp( -4ika)/[(cos 2 ~ a  + (i&/2) sinh 2 ~ a ) '  + (7'14) sinh'2~a exp(4ikb)l 

The transmission amplitude Tdouble = P/A is thus given by 

( 5 )  

where 

E = K/k - k/K 7 = K/k + k/K. 

Using (4) , the one-phonon absorption tunnelling amplitude is given by 

-b  

T I  = & (1 d x ( C T exp( - K x )  + D r exp( K x )  ) V1 ( C exp( - ~ x )  + D exp( ~ x )  ) 
-2a-b 

+lbk+b dx(MT exp(-Klx) + N r  exp(rclx))Vl exp( -ia) 

The calculation can be simplified if only the dominant exponential terms are retained, 
e.g. C1 is of the order of exp[-~,(6a + b ) ] ,  therefore, the terms including CCT and 

t In the3Dcase, TI = (m/4nh2) (Y&)(r)IV1(r)IYp)(r)). 
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DCT are negligible in comparison to the other terms in the first integration (6). Fur- 
thermore, the low-o approximation is used 

hw 6 fi2k2/2m fio Q h2K=/2m (7) 

such that^ - K~ Q K + K ~ .  Inthiscase, the CDT termismuchlargerthanthe DDT term. 
These approximations are also in accordance with BL’S treatment. Thus, the first part in 
(6) is 

Ti1) exp(2ikl a) = Texp(2ika)( V, /2fiw) (exp(w z) - 1) exp( w z )  exp(iot’/2). (8) 

where 

kl = k + mw/hk K~ = K - mo/hK t = 2 m a / h ~  t’ = 2mb/hk. 

Among the contributions in the second part of (6), the MNT term is the dominant 
one, therefore 

Ti2) = Texp(2ika)(V1/2fiw)(exp(ot) - 1) exp( -iwt’/2) exp( -ia). 

Combining (8) and (9), we obtain 

T ,  exp(2ikla) = Texp(2ika)(V1/2ho)(exp(wz) - 1) 

x {exp(ot) + exp[ -i(wt’ + a)]} exp(ioz’/2). 

(9) 

Equation (10) is the central result of this work. Its validity can ,e chec..ed by the 
case b = 0, (therefore, t‘ = 0) and a = 0. It does lead to BL’S single-barrier result 
(Buttiker and Laudauer 1982), i.e. 

T1 exp(2ikla) = Texp(2ika)(V1/2fiw)(exp(2wt) - 1). (11) 

Equation (10) clearly shows the coherence effect of the time-dependent motion of 
two barriers. For the simplest case (b  = 0) which is a single-barrier formed by two 
adjacent barriers, a = Ogives theconstructive interference with afactor (exp(2oz) - 1) 
in the magnitude of T,, and a = n gives the destructive interference with a factor 
(exp(wz) - 1)’. Now, if the motions of the two adjacent barriers are uncorrelated, i.e. 
a is a stochastic variable, the transmission current is the summation of two currents 
enhanced by the two barriers respectively. In this case, the first current in (8) will 
carry a factor exp(2wz)(exp(wz) - 1)’ and the second one in (9) will carry a factor 
(exp(ot) - 1)’. Thus, the total current at energy El = h2k;/2m is 

IT1 I2hkl = I TI2(V1/2hw)’hk1(exp(oz) - l)’(exp(2wt) + 1). (12) 

The importance of interference due to coherent lattice motion can be measured by 

(13) (I Tponstructive I 2 - I Tyherent  1 2 ) / 1  ~p~~~~~~ = 2/(exp(oz) + exp( - U T ) ) .  

Usually, exp(wz) is of the order of 1 and in a model system of a double barrier with 
ultrathin well-material such that b = 0, if 2a = 80 A, V,, = 400 meV, E = 185 meV, o = 
300 K, it leads to w z  = 2.2 and the measure of the coherence is about 12%. However, 
in the case 2b = 50 A, as shown later in the numerical calculation, the coherence effect 
can count for up to a 60% contribution. 
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We now proceed to the resonance of double-barrier tunnelling. The transmission 
coefficient through the double barriers is shown in ( 5 ) .  When b = 0, it leads to a single- 
barrier result 

Tsingle = exp( -4 ika)/(cosh 4 ~ a  + (i&/2) sinh 4 ~ a ) .  (14) 

Notice that now the barrier width is 4a. The magnitude of Tsingle is a monotonic 
increasing function of k. The case b # 0 represents a double barrier. First, we examine 
its static resonant tunnelling. Equation 5 shows that the transmission amplitude Tdouble 

is a periodic function of the width of the well with a period equal to n/k,  i.e. when 2b’ = 
2b + nn/k, the well with width 2b’ gives the same Tdouble as the well with width 2b. 
Secondly, Tdouble is not a monotonically increasing function with respect to k. Instead, it 
exhibits peak-valley characteristicslike any resonance. It hits the maximum transmission 
near the quasi energy levels of the well between -b and b. We illustrate this in the 
following under the assumptions that the barriers are strong such that 

cosh 2 ~ a  - sinh 2 ~ a  - exp(2~a)/2 (15a) 

k < K .  (15b) 

sin 2k, b = 0 or k, b = nn/2. (16) 

Tdouble = ( - i k / 4 ~ )  eXp( - 4KU) eXp( - 4ika). (17) 

and the tunnelling is small for low energy such that 

The condition for the eigenvalues in the infinite well satisfies 

Substituting (15) and (16) into ( 5 )  we find 

This simple estimate gives at least a factor of K/k larger than other states not around 
the quasi levels near the bottom of the well. This is evidence of resonant tunnelling. The 
analysis above can be refined to include the shift from the quasi levels for the true 
resonance. Suppose the shift is small, we can expand exp(4ikb) around k,b = nn/2. This 
leads to 

k, b = nn/2 - n n / 4 ~ ,  b. (18) 
As a matter of fact, the peak will remain finite since the denominator of Tdouble from 

( 5 )  does not vanish at any finite KU (although it could be rather small) and this will 
contribute to the natural width of the resonant tunnelling peak. In addition, there is a 
width associated with the various scattering mechanisms. We leave this for the numerical 
calculations presented later in this section. 

In the double-barrier case, the interference effect is manifested in the enhanced 
tunnelling interference factor (ETIF) as shown in (10) 

ETIF = exp(oz) + exp( -i(wz’ + a)) (19) 

where o and a are the parameters of oscillatory barriers defined in (2) and t and z‘ are 
defined in (8). When wz‘ + a = 2nn, constructive interference occurs. On the other 
hand, wz’ + a = (2n + 1)n is the condition for destructive interference. Because the 
magnitude of ETIF can vary from exp(wt) - 1 to exp(wz) + 1, this is a profound effect 
for T I  of coherent tunnelling especially when wz is small. When a is random, the 
resulting tunnelling current is shown in (12), which is nothing other than the summation 
of two one-phonon-absorbed tunnelling currents by two individual barriers. Notice that 
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the two currents are not identical: the first phonon-assisted tunnelling by the first barrier 
in (8) is larger than the second one in (9) (as it should be since the electron absorbing 
one phonon in the first barrier will maintain at E ,  in the second barrier). The overall 
picture is this: z, the transversal time through the barrier (Buttiker and Landauer 1982) 
which is dependent on a but independent of b ,  determines what the extent of the 
enhanced tunnelling could be; z '  (which is dependent on b but independent of a) the 
real traversal time across the well, determines the interference of two one-phonon- 
absorbed states. 

Finally, we present a numerical study of the phonon-assisted tunnelling and the 
interference effect in a model system described by Goldman et a1 (1987). The data for 
modelling GaAs-AlGaAs double-barriers are the following: the width of the GaAs well 
is 26 = 50 A, the width of the AlGaAs barrier is 2a = 80 A, and the barrier height is 
Vo = 0.4 eV. The external potential V1 reflects the interaction strength between the 
electron and the phonon. In the present semiconductor heterostructure case, it is mainly 
due to the longitudinal optic phonon (LO) (Goldman et a1 1987, Wingreen et a1 1988, 
Wendler 1985, Wendler and Pechstedt 1987, Jain and Das Sarma 1989). Stone et a1 
(1985) treat electron-phonon scattering semiclassically as a weak perturbation. We take 
V1 = 4 meV which is in accordance with their ro = 0.1. The frequency of the temporal 
oscillation is chosen to be that of the bulk LO modes. These modes exhibit a slight 
dispersion and we take hw = 300 K = 25 meV (Wingreen et a1 1988, Wendler 1985, 
Wendler and Pechstedt 1987, Jain and Das Sarma 1989). 

The width of the tunnelling peak is associated with the scattering mechanism like 
any resonance phenomenon and it is determined by the magnitude of the hopping matrix 
element in the electronic Hamiltonian. The origin of the width can be attributed to 
electron+lectron, electron-impurity, electron-defect and electron-acoustic phonon 
scattering, etc. The observation of sharp structures in the conductance suggests a narrow 
resonance width (compared to the energy level spacing) for both elastic and inelastic 
resonance. Actually, one group (Kopley et a1 1988) obtained I' = 0.25 meV. However, 
another group (Wingreen et a1 1988) reported that the resonance width r = 0.2 t iw, 
where o is the LO frequency. This width is about 8 meV if tiw = 40 meV (Goldman et a1 
1987) in AlGaAs barriers, which certainly washes out all the most rugged features but 
maintains a coarse-grained resonance structure. Our numerical studies take r = 5 meV 
in agreement with Goldman et a1 (1987) and Wingreen et a1 (1988). We argue that the 
sharp rugged features in the tunnelling spectra could be due to the interference effect of 
two uncorrelated barrier phonon modes on top of the experimental noise. 

The calculation is based on (10) with the resonance width r built in ( 5 )  through the 
following expression (Stone and Lee 1986): 

T,(E) = T(E)  ir/2n/[(E - E,) + ir/2] 

where Eo is the energy at resonance. 
Figure 2 shows the resonant peak of tunnelling probability 1 TI2 at E, = 185 meV 

which is the fourth level? in the quantum well, the one-phonon-absorbed peak at 
E,  = Eo + hw = 210 meV and a barely-observable one-phonon-emitted peak at E-1 = 
Eo - hw = 160 meV. The one-phonon-emitted tunnelling amplitude here is obtained 
by replacing w t  by - w t  in (10). The two tunnelling sidebands are quite asymmetric 

t The reason in choosing this resonant state is because it lies in the middle of the barrier height in order to 
maintain the validity of the low-frequency approximation in (7). 
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because of the different dynamical factors exp( or) and exp( - wz) .  The phonon-assisted- 
tunnelling peaks also exhibit the resonance behaviour which is responsible for the 
low resolution, i.e. large energy scale structure of the conductance. Furthermore, the 
coherence plays an important role: the in-phase oscillation of double barriers gives the 
constructive interference for enhanced tunnelling probability amounting to 45% of 
the principal peak in the present model study, the out-of-phase oscillation gives the 
destructive interference which amounts to 10% , and the random-phase oscillation gives 
half of the constructive interference which is about 28%. The suppressed tunnelling 
probability is about 1.5% which can be barely recognised in figure 2. This is of the same 
order as Goldman et a1 (1987) which reported a value of 4% of the principal peak. 
However, it is apparently ten times smaller in comparison to the calculation of Wingreen 
et a1 (1988). This is probably due to our small perturbation parameter VI in addition to 
the much smaller dynamical factor exp( - w z )  in the phonon-emitted tunnelling. The 
incoherence case is the one observed in the experiment where the thermal state of the 
two slab phonon modes is not phase coherent. The curve representing the incoherent 
case should be understood as the ensemble average which is done by repeating the 
current measurements a large number of times. If the experiment is conducted without 
this extra averaging, one actually observed the result from individual phase differences. 
Since the sweeping frequency measurements are usually not done in situ, it leads to the 
stochastic phase difference and introduces the sharp, fine features of the spectra, i.e. 
the fluctuating conductance in the small energy scale. However, the detection of the 
tunnelling current takes quite a long time and it effectively takes the average process of 
the different individual phases since the measuring time is usually much longer than the 
coherence time of the thermal phonon bath. We believe that this extra degree of 
complexity explains the rugged I-V curve. 

3. Discussion 

We have shown in this work the importance of phonon-assisted tunnelling and its 
resonance and coherence aspects. This helps our understanding of complicated features 
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of the tunnelling spectra of the double barriers. It shows that the qualiative conclusion 
for the localised phonon modes remains valid for the extended modes and the sharp 
rugged feature can be attributed to the resonant tunnelling and the resonant phonon- 
assisted tunnelling as well as the sampling of the uncorrelated phonon modes that exist 
in the two-barrier regions. Moreover this study opens the way in studying the coherent 
tunnelling spectra. 

The nature of the electron-phonon interaction and the slab phonon in the het- 
erostructure is crucial in understanding its tunnelling spectra. First of all, the primary 
contribution to the electron-phonon coupling is the longitudinal optic (LO) phonons 
(polarisation eigenmodes) since the series 111-V semiconductor materials are strongly 
polar-like and its longitudinal part of the electric field is coupled to the charge of the 
electron. This paper only treats the bulk LO phonon in the two-barrier regions, however, 
the LO phonon in the quantum well and the interfacial LO modes are also important in 
principle. There are also indications (Wingreen et al 1988, Wendler 1985 Wendler 
and Pechstedt 1987, Jain and Das Sarma 1989) that the interfacial phonon mode are 
important in the problem of hot electron relaxation in quantum wells. The accurate 
solution of the phonon modes is a formidable task since the GaAs and GaAlAs layers 
result in a complicated boundary geometry. So far all the theoretical calculations assume 
that the polarisation waves are completely backscattered from the interface. This results 
in the confinement of the slab phonon modes either to the barrier or to the well regions. 
If this is the case, it prohibits the forward propagation of LO phonons through the 
interface, thus, preventing any interference of LO phcnons within two barriers. In order 
to observe the interesting constructive or destructive interference of tunnelling through 
double barriers, either the breakdown of the confinement approximation or some clever 
control of the phases of the excited phonon modes in different regions is required. In 
the former case, the phase difference a is determined, in principle, by the thickness and 
the dispersion relation of the material in the well if the transmitted phonon is considered. 
The coherent lattice motion might be excited by the coherent laser pulse like the excited 
molecular vibrational modes. We have not included in our work the phonon modes 
inside the well. However, our two-potential formula (4) is still valid of these modes are 
included and the enhancement due to these modes are also expected. The numerical 
example only considers the bare electron mass, we will address these questions in future 
work. 

As to the convergence of the perturbation series, we want to emphasise that the small 
parameter is not only V,/2hw which is 0.08 in our numerical study. In fact, the small 
parameter is V1/2hw(exp(wz) - 1) which is about 0.64. It reaches V1z/2h in the small- 
w limit. It seems that this parameter might be too big to breakdown the perturbation 
expansion. However, for the single-barrier case we have calculated up to the second- 
order perturbation and the summation is more like the expansion of the exponential 
function.? If this is the case, convergence is guaranteedfor any parameter. Nevertheless, 
the difficulties are now mathematical as regards the derivation of the nth order per- 
turbation of the single-barrier as well as the double-barrier model. More work will be 
undertaken in this direction. 

t We solved the two-quanta absorption case using BL'S method (Jiang 1989). The solution in the low-frequency 
approximationis T2 exp(ik2a) = To exp(ika)(V:/8ti2w2)(exp(wz) - l),. Apparently, it isconsistent with the 
definition of the traversal time of tunnelling since T,  exp(ik,a) = To exp(ika)(V:t2/2fi2) when wz 4 1 and 
t 2 / 2  = J; df, J; df , .  One may conjecture that T ,  exp(ik,a) = To exp(ika)(Vqt"/n!fi') holds for n-quanta 
absorption. 
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